If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1-4y+3y^2=0
a = 3; b = -4; c = +1;
Δ = b2-4ac
Δ = -42-4·3·1
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2}{2*3}=\frac{2}{6} =1/3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2}{2*3}=\frac{6}{6} =1 $
| -3x^2+5x-3=-x-8 | | x/5=16/24 | | 7x+29=4x-31 | | 17h=h+4.9 | | 9-6.x=27 | | 9.x-4=2.x+59 | | (3×4)+x=20 | | 190=38t/41 | | 258y=17,802 | | 3(u–3)=21 | | 28=4v+10v | | 7x–5=58 | | 3x^2-7x-13=x^2-10 | | 58=9(w–4)–14 | | n/10=18/4 | | 37=9c+10 | | 4b^2+10b+7=4+2b | | 7(y+5)=84 | | 24=4(z+1) | | 87=8p+7 | | 6(3+w)=42 | | c–33=3 | | 3x+4+x+28=360 | | 5=4t+5 | | 9a+8a=34 | | 72=4c+4c | | 0.6(x-4.2)=0.4(x-0.7) | | 7u+1=50 | | 12+q=17 | | w+20=30 | | |3x-7|=|2x+3| | | 2/3x+x-10=360 |